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A RELATION BETWEEN DIFFUSION AND 
VISCOSITY IN BINARY FLUID MIXTURES 
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* Theoretical Chemistry Department, University of Oxford, 5 South Parks Road, 
Oxford, O X 1  3UB, England. 

t Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2J1, Ccinada. 

(Received 5 Ocroher, 1989) 

Starting from the expressions for the mutual diffusion coefficient D , ,  and the longitudinal viscosity + <, 
where 4 and i are respectively the shear and bulk contributions, in terms of partial dynamical structure 
factors, S i j ( q ,  OJ), i , j  = I ,  2, a linear combination is formed to eliminate the cross-term S,,(q, (I)). In the 
course of this development, Vineyard's approximation is invoked to relate S,,(q, o) to the self-functions 
Sl;'(q, w). This reduces then the above linear combination of D,, and ($q + 5 )  to an expression in terms of 
the self-diffusion coeficients D ,  and D, in the mixture, and quantities that can be calculated from 
thermodynamic data. The result should be most accurate for small mass differences. Some possible 
experimental tests of the proposed relation are finally referred to. 

K E Y  WORDS: Longitudinal and bulk viscosity. Dynamical structure. 

1. INTRODUCTION 

Though some progress has been made on the theory of transport coefficients in binary 
fluid mixtures, this has, to date, either invoked simplified models such as hard 
spheres' or conformal solution theory;' or computer simulation studies, say with 
Lennard-Jones potentiaL3 

Analytic progress, leading to transport coefficients in such mixtures, without direct 
appeal to the nature of the interatomic interactions, has so far been slow. However, in 
the present paper, we shall base an approximate analytic theory on the expressions for 
the transport coefficients in binary mixtures4 in terms of the partial dynamic structure 
factors Si j (q ,  (0). It is relevant here to mention the work of Clark' on binary gas 
mixtures, and in particular on the helium-xenon mixture with xenon dilute, where 
dynamical structure factors are obtained via inelastic light scattering from the density 
fluctuations. Relevant earlier work in the same general area is that of Sugawara et uL6 

The outline of the paper is then as follows. In section 2, the formulae for atomic 
transport, and in particular mutual diffusion and longitudinal viscosity, are summar- 
ized in terms of number-concentration dynamical structure factors. These formulae 
are then employed in section 3, though now approximately, to link a combination of 
the mutual diffusion coefficient D , ,  and the longitudinal viscosity 44 + [, with 4 the 
shear and [ the bulk viscosities, to the self-diffusion coefficients D ,  and D ,  in the 
mixture, together with quantities accessible from thermodynamic measurements. 
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2. TRANSPORT COEFFICIENTS RELATED T O  DYNAMICAL 
STRUCTURE FACTORS 

For components 1 and 2 in a binary liquid mixture, one evidently has three pair 
correlation functions g1 l(r), gZ2(r) and ql2(r), with corresponding static structure 
factors S i j ( q ) ;  i, j = 1 ,  2. Their dynamical generalizations Si j (q ,  o) are central to the 
description of atomic transport in such mixtures, as shown in ref. 4. There, the 
number-concentration functions S", S,, and S,, proved the correct tools to use in 
writing explicit formulae for diffusion and viscosity in the mixture. 

To be specific, we briefly summarize the definitions of these number-concentration 
functions. Let the total number density at position r a t  time t, say n(r, t) ,  be written in 
terms of the densities of the two components as 

(2.1) n(r, t )  = nl(r, t )  + n,(r, t) .  

Taking the Fourier transform of n(r, t) as 5(q, t ) ,  then 

dt exp( - iot)(n"'(q, 0)5(q, t ) ) .  

Similarly, defining the local deviation from the mean concentration c as 

V 
N 

6c(r, t )  = -[c,6nl(r, t )  - c16n,(r, t ) ]  (2.3) 

with Fourier transform E(q, t) one has 

SNc is less important in what follows than S,, and S,,  but is defined by an obvious 
extension of eqns. (2.3) and (2.4). 

In terms of the original partial dynamical structure factors S i j ( q ,  a), one has 
explicitly : 

(2.5) S N N ( q ,  w, = clSll(q,  O) + cZSZZ(q? w, + 2(c1c2)1'2SlZ(q~ O)  

and 

Sm(q,  0) = CiC,[c,S1,(q, + CiS,,(q, 0) - 2(~1~2)' '~S12(q,  011. (2.6) 

With these definitions, let us summarize the results for the transport coefficients. 

2.1 Limiting forms of S N N  and S,, determining mutual diflusion and viscosity coeffi- 
cients 

The above formulae, representing density and concentration fluctuations, can be used 
in conjunction with the fluctuation-dissipation theorem to write formulae for the 
mutual diffusion coefficient D,, and the combination $9 + i of the shear ( q )  and bulk 
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(i) viscosities of the liquid mixture.’ The results are: 

with f l  = ( k , T ) -  and G the Gibbs free energy of the liquid mixture.’ The correspond- 
ing result for 4q + [ is given in terms of S,,(q, w )  by 

1 
$ q  + [ = nfl lim o4 lim ,S,,(q, w). 

w - 0  q + o q  

These results (2.7) and (2.8) are formally exact for isotropic mixtures but, so far, of 
course, one does not have explicit expressions for S,,(q, o) and S,,(q, o) in analytic 
form for any mixture. Therefore, in the following section, we shall make appropriate 
approximations to S , ,  and S,, so that a suitable linear combination of D , ,  and 
41 + [ appearing in eqns. (2.7) and (2.8) can be written in terms of self-diffusion 
coefficients D ,  and D ,  defined in the mixture, plus knowledge from thermodynamic 
measurements. 

3. APPROXIMATE RELATION OF D,,  AND :q + [ T O  SELF-DIFFUSION 
COEFFICIENTS 

To motivate the approximations proposed below, consider next the forms S” and S,, 
in eqns. (2.5) and (2.6) in relation to the transport formulae (2.7) and (2.8). In for 
example the dilute Xe-He gas mixture studied by Clark,’ it seems clear that it would 
be very advantageous to eliminate the ‘cross-correlation’ function S ,  , ( 4 ,  o) appear- 
ing in eqns. (2.5) and (2.6). This we propose to do, but now only approximately, by 
combining the transport formulae (2.7) and (2.8). Where the approximations enter is 
in the limiting processes involved in these expressions for D , ,  and $ q  + [. The limit 
involved in D , ,  has w’/q2 whereas that in $q + [ has the factor w4/q4. In this latter 
expression, which is reflecting collective fluctuations of the mixture, a rather natural 
approximation is to replace the factor w2/q2 by the square of the velocity of sound v,’. 

Motivated by the above discussion let us write 

While this eqn. (3.1) is still exact for isotropic mixtures to this point, we note that if 
we return to eqns. (2.5) and (2.6) for S,, and S,, respectively, then replacing w’/q2 in 
the S,, term of eqn. (3.1) by the approximation u: allows the cancellation of the 
cross-term Slz .  However, the remaining terms involving S,, and S , ,  in the S,, 
contribution to eqn. (3.1) must simultaneously be approximated in such a way that 
the limit resulting from the replacement of w2/q2 by v,’ exists. This can be achieved by 
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generalizing the approximation introduced by Vineyard7 for a pure liquid, to write in 
the mixture: 

&(q, w )  = si i (q)Slf(q,  a>. (3.2) 

Once this eqn. (3.2) is inserted in the limits involving S , ,  and S,, in eqn. (3.1), after 
replacing w2/q2 by u: in the S,, term, then the limits in the self-functions S$) merely 
lead to Di/n and hence 

Eqn. (3.3) is the basic relation sought between diffusion and viscosity coefficients in 
the mixture. It should work best when there are small mass differences between the 
two components of the alloy. 

4. DISCUSSION AND SUMMARY 

I t  will now be of considerable interest to test eqn. (3.3) on mixtures over a wide range 
of concentration. One would want, ideally, to measure 4~ + by sound-wave 
attenuation, and the three diffusion constants D,,  and the self-diffusion constants D ,  
and D, also as a function of concentration. The thermodynamic information required, 
namely zi,:, d2G/dc:, S,,(O) and S,,(O) is already available for a range of mixtures, 
from liquid metal alloys' to mixtures of rare gases. 

Of course, eqn. (3.2) is known not to be quantitative when applied directly to 
analyze neutron scattering data on one-component liquids. While this does not 
preclude its usefulness in approximating the right-hand-side of eqn. (3.1), it is clear 
that experimental test of its consequences through eqn. (3.3) is important in deciding 
how refinements or modifications to it should be made in atomic transport theory in 
mixtures. 
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